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Abstract 

 

Tunable laser sources in the mid-infrared (MIR) spectral range are required for 

several Air Force applications.  Existing lasers with output in the near-infrared can be 

converted to more desirable MIR by using nonlinear effects.  Orientation patterned 

gallium arsenide (OPGaAs) is a promising nonlinear conversion material because it has 

broad transparency and can be engineered for specific pump laser and output wavelengths 

using quasi-phase matching techniques. This research examines optical parametric 

oscillation (OPO) of several OPGaAs samples using a 2.052 μm wavelength Tm, 

Ho:YLF pump laser.  Of the seven samples available the five that were capable of getting 

OPO output with this pump were tested and OPO was successfully demonstrated on 4 of 

the 5.  The highest slope efficiency of 10% was seen in sample 5.  The highest pump 

power of incident 190 mW without causing damage to the AR coatings was applied to 

sample 4.  Finally spectroscopic data of input and output was obtained and compared to 

calculated values.
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OPTICAL PARAMETRIC OSCILLATION IN 

ORIENTATION-PATTERNED GALLIUM ARSENIDE 

I. Introduction 

1.1 Motivation 

Mid-IR tunable laser output is especially desirable for uses such as infrared 

counter measures and battlefield remote sensing technologies.  Orientation patterned 

gallium arsenide (OPGaAs) is developing into a promising material for use as an optical 

parametric oscillator (OPO) to create a tunable source in the mid infrared region, and in 

the longwave (8-12µm) region as well.  Though this material does appear to be a viable 

candidate for OPO there have been significant challenges in its development.  As a 

semiconductor, GaAs is very well understood; it has been used for many years, it is 

readily available, and there are numerous established techniques to manufacture GaAs.  It 

also has a desirable transparency window from 1-μm to 16 μm as well as a high damage 

tolerance which is an especially desirable characteristic in military applications.  It also 

has a high second order nonlinear coefficient compared to other materials in similar 

applications.  For example OPGaAs has a deff = 110pm/V versus ZGP which has a deff = 

70 pm/V. (Feijer, 2004) 

Unlike many OPO materials OPGaAs is not birefringent. Thus the Poyinting 

vector does not experience walk off typical in other materials that have been considered 



 

 2

for this application. Unfortunately since it is isotropic it cannot be phasematched using 

birefringence, and must instead rely on quasi-phasematching (QPM) using a periodic 

structure.  The periodic domains required to generate OPO through QPM in LiNbO3 can 

be generated by applying an electric field across a sample patterned using standard 

photolithographic techniques.   Since GaAs is not ferroelectric several other methods 

have been explored.  One of these methods involved placing a series of GaAs plates at 

Brewster’s angle, (Schlossberg, 1976), and another of them involved manually polishing, 

slicing and stacking GaAs pieces (Gordon, 1993). Both of these processes yielded 

nonlinear conversion in a single-pass process, but resulted in too much loss at the 

domains to be useful in OPO. The process that appears to have the most promise and is in 

current use is to employ a combination of molecular beam epitaxy (MBE), 

photolithography, and hydride vapor phase epitaxy (HVPE) to create samples with a 

periodically patterned thickness greater then 500-μm.   

1.2 Nonlinear Optical Review 

There are a number of resources available on theories of nonlinear optical 

processes including optical parametric generation or oscillation and quasi-phase 

matching.  A second order nonlinear process, such as in OPG/OPO, can be defined as an 

interaction among three photons. In an OPG/OPO, the pump photons have the highest 

energy and are input into the nonlinear crystal; the other two photons are defined as 

signal and idler photons and are lower in energy.  Frequency conversion occurs when two 

conditions are met, conservation of energy and conservation of momentum.  A pump 
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photon with an electromagnetic frequency, ωp, generates a signal frequency, ωs, and an 

idler frequency, ωi, which must satisfy the following energy conservation relationship: 

isp ωωω +=             (1) 

And since the ħ is in all terms it can be canceled and the equation can be simplified: 

  isp ωωω +=                                  (2) 
In optical parametric generation the pump photons split into signal and idler photons 

without a second input. 

In an OPG/OPO, system, the photons needed for the signal and idler are already 

present in the form of quantum fluctuations.  The photons will attempt to radiate at all 

frequencies in all directions constrained only by energy conservation.  The reason all of 

these frequencies are not observed is because only those frequencies that meet the phase 

matching condition are favored for optical amplification.(Sutherland, 1996)  In order for 

the momentum to be conserved the following  phase matching condition must be met: 

         (3) 
 
 
Where jk is the momentum of the pump, signal, or idler photon and the total momentum 

must be conserved although generally there is a phase mismatch, kΔ .  One way to 

eliminate the phase mismatch is to assume birefringent phase matching (BPM).  This 

involves using the crystal orientation and polarization directions to make 0=Δk .  An 

alternate approach to BPM is quasi-phase matching (QPM) (Armstrong, 1962).  QPM 

reverses the sign of the nonlinear coefficient after odd multiples of the coherence length.  

This reversal of the sign shifts the polarization response back into phase with the pump 

beam which allows for a continued net positive energy flow from the pump into the 

i

i

s

s

p

p
isp

nnn
kkkk

λ
π

λ
π

λ
π 222

−−=−−=Δ



 

 4

signal and idler frequencies.  For 1st order QPM the domain period is two times the 

coherence length and the physical distance of each coherence length, cohl , is defined by: 

                                              
Although the reversing of the deff is effective in ensuring the nonlinear interaction grows 

it is not quite as efficient as BPM. By knowing these relations it is possible to determine 

the period that is required to achieve QPM given a particular pump frequency and 

nonlinear material.  This is shown in Figure 1.1 for a couple of given pump wavelengths 

in OPGaAs. 
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 Figure 1.1.  Signal and Idler wavelength for OPGaAs versus period given for two 

different pump wavelengths, 2.05 micron and 1.90 micron. (Smith, 2005) 

1.3 Power and Gain Considerations 

Optical Parametric Generation (OPG) is a quantum effect, but since there is a very 

high number of pump photons it can be treated semi-classically and the pump may be 

approximated by a constant classical field.  Then the signal and idler fields are initially 
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=
π

(4) 
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quantized as ½ a photon present per mode or alternatively the one photon can be put into 

the signal and no photon is placed in the idler.  By this approach the gain can be 

calculated and provides the same results as the full quantum mechanical treatment.   

The gain equation for a single pass is then shown to be: 

( ) ( )
( )2

2
2

3

2 sin2

Lk
LkL

cnnn

Id
LG

opis

peffis
s

⋅Δ

⋅Δ
=

ε

ωω
                    (5) 

Where L is the overall length of the QPM portion of the nonlinear crystal and Ip is the 

pump intensity in W/m2. (Harm, 2002)  Optical parametric Generation is a spontaneous 

process and will occur under all conditions.  Unfortunately the input pump must be 

sufficient to create enough output to be measurable and will be explored more in section 

3.2 of this document.   

In contrast with the single pass OPG process, in an OPO either the signal, the 

idler, or the signal and idler are resonant in a cavity similar to a laser cavity, though not 

the same, in that the initial mirror will reflect either the signal or signal and idler 

completely and the second surface will have a lower reflectance (e.g. 80%) with respect 

to the signal or signal and idler.  The OPO process is a very effective manner in which to 

increase the net gain of the signal and idler.  The signal and idler frequencies will adjust 

via phase matching to maximize the gain such that these frequencies will achieve the 

lowest threshold and will be selectively amplified.  Several things affect the output 

frequencies including, but not limited to, the temperature of the crystal, the bandwidth of 

the pump, and in the presence of birefringence the angle incident on the crystal.  In an 

OPO, unlike in a laser, the signal and idler are only amplified when traveling in the same 

direction as the pump laser.  There are basically two types of OPOs: a singly resonant 
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oscillator and a doubly resonant oscillator.   An OPO which resonates the signal or idler 

only is a singly resonant oscillator (SRO); an OPO which resonates the signal and idler is 

a doubly resonant oscillator (DRO). 

As briefly described above a singly resonant process involves a set of at least two 

mirrors in which the first mirror allows the pump to pass freely into the crystal but 

completely reflects the signal and idler.  The second mirror then only needs to reflect the 

signal or idler in order for SRO to occur, but may also reflect the pump (Figure 1.2a).   

 

Figure 1.2.  (a) is a schematic showing a singly resonant oscillator and (b) a doubly 
resonant oscillator. 

 

If the system is set up as in Figure 1.2a then it can be shown that the pump 

threshold Ith required to get output in the system will be 

(a) 
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Where the Ith is the threshold and Rj, represents the reflectance of the resonator 

mirrors at the signal and idler wavelengths. 

Alternatively in a doubly resonant oscillator the signal and idler are reflected in 

the resonate cavity.  The threshold gain is determined under self-consistent conditions 

when the parametric gain is equals the round trip electric field loss and similarly to SRO 

the threshold intensity for DRO can be derived as, 
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                        (7) 

 

when the resonator is set up as shown in Figure 1.2(b).  Both of these equations assume 

uniform intensity plane wave interaction but real beams are actually more approximated 

by Gaussian intensity profiles.  Because of this the pump will be focused onto the 

nonlinear crystal and will not maintain a uniform cross-section over the length of the 

crystal.  Also, the resonated signal and idler beam are not confocal with the pump which 

will additionally increase the threshold. (Sutherland, 1996) 

 Also if the SRO threshold is compared to the DRO threshold, the threshold for 

DRO should be lower then SRO: 

( )
2

1 i
SRO
th

DRO
th R

I
I −

=      (8) 
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Since Ri must be less then one this equation must also be less then one.  For 

example if the Ri = 80% in the DRO system then IDRO/ISRO = 0.1.  This is one reason 

DRO mirrors were used in this experiment. (Yariv & Yeh, 2003) 

1.4 Fabrication 

Many nonlinear optical materials are ferroelectric materials and the periodic 

structures of these materials can be created by applying large voltages thus reversing the 

sign of the nonlinear coefficient at periodic intervals.  Unfortunately, GaAs is not a 

ferroelectric material and therefore this process is not possible.  Early attempts at creating 

orientation patterned gallium arsenide were by mechanical means.   

Thin slices of GaAs were cleaved from hand-polished GaAs wafers; each 

alternate slice was rotated 180 degrees and then subsequently bonded together.  

Unfortunately this method resulted in too many imperfections at the interfaces and 

resulted in the optical losses to be too high to overcome the required threshold for OPO.  

Later a process was developed to fabricate single crystals of GaAs with periodic regions 

having alternating domains. This process is summarized in Figure 1.3. Initially the 

process starts with a GaAs wafer and a thin layer of Germanium (2-3 μm) is deposited on 

top of the initial layer of GaAs.  Then the Germanium layer was etched, via 

photolithography, in a periodic pattern (Figure 1.3).  It was found that a reversed layer 

could be formed by using the germanium as an interlayer.  After the periodic pattern is 

created molecular beam epitaxy (MBE) is used to create a lower layer of GaAs of 

approximately 10 μm thick.  MBE is a slow growth process, however, and after this 

initial growth the remaining thickness is grown by hydride vapor phase epitaxy.  HVPE 
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runs must sometimes be interrupted to allow for removal of parasitic growth on the 

furnace, after which the sample can be repolished and returned to the furnace for 

additional growth.  This is usually done to grow additional thickness of material, but 

often produces mixed results.  Via this method it has been possible to create samples with 

periodic structures in excess of 500 μm thick.   

Figure 1.3.  OPGaAs Growth Process 
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II. Previous Work 

In 1976 Schlossberg et al attempted to stack a series of GaAs Brewster plates 

during an early attempt to get frequency doubling with this material.  The plates were cut 

such that the electrical field vector of a CO2 TEA was parallel to the [111] direction of 

the crystal.  Although his approach is reasonably sound he concluded that the losses due 

to reflections at the surfaces of the samples were too high for phase matching to occur. 

(Schlossberg, 1976)   

Several years later Gordon et al explored another approach to manufacture GaAs 

periodic structures for QPM.  In order to reduce the losses from the air-semiconductor 

interface the GaAs layers were diffusion bonded together to create monolithic structures.  

This process had been used successfully joining dissimilar semiconductors for 

optoelectronic devices.  To do this a variety of lightly doped GaAs wafers were used.  

They were mechanical grade and polished on both sides.  Then the wafers were diced and 

cleaned thoroughly.  They were stacked in a furnace at 840 oC for two hours with a 1 kg 

weight and an atmosphere of 5% H2 and 95% N2.  (Gordon, 1993) 

After bonding the samples were cleaved along crystal planes leaving the bonded 

surfaces intact.  Wafers with {110} perpendicular to the surface were chosen because 

they provided the largest nonlinear coefficient.  Again a CO2 laser was used as the pump 

laser for the experiment.  Gordon et al did several measurements of damage thresholds 

for these lasers and discovered that although the bulk material seemed to be rather robust 

but the coatings tended to degrade readily at relatively low pump powers.  She also 
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suggested several structures that would provide promise for tuning output by gradual 

variations in the thickness of the bonded plates. (Gordon, 1993) 

Then in 2002 Harm did several experiments attempting to get QPM OPG and 

OPO using samples manufactured in a similar process as shown in Figure 1.3.  Although 

ultimately unsuccessful in both respects due to periods that could not be phase matched 

with the pump laser used he did an exhaustive analysis.  He developed a lot of the 

mathematics that made it easier to understand how OPO in OPGaAs occurs. (Harm, 

2002) 

Vodopyanov et al then finally demonstrated successful OPO in epitaxially grown 

OPGaAs.  In their system they had a 0.5mm x 5 mm by 11 mm sample with a phase 

matching period of 61.2 μm.  The laser was a Nd:YAG laser pumped OPO tuned between 

1.8 and 2 μm with a temperature tuned PPLN Crystal.  The experiment primarily 

explored pump tuning versus signal and idler output wavelengths. (Vodopyanov, 2004) 

Then in 2005 Schunemann et al of BAE systems successfully demonstrated OPO in a 62 

μm grating.  They explored the slope efficiency and surface temperature effects on the 

output.  Their system is more closely related to the system in this study as they used a 

Tm:Ho:YLF laser pump.  Although their pump laser had a slightly different setup their 

spot size was similar to the work presented here at a radius of 116 μm  The beam had a 

pulse width of 54 ns although they also explored a pump beam with a pulse width of 25 

ns.  Their setup did differ from ours in that their output DRO mirrors had 90% reflectance 

for the signal and idler whereas our output DRO mirrors had an 80% reflectance. 

(Schunemann, 2005) 
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Finally Meyer did some very useful work done which allowed a better 

understanding of the available samples which were manufactured by the process 

described above (Figure 1.3).  The period of the samples ranged from 49 μm to ~64 μm 

and the thickness of the patterned regions was approximately 0.5 mm. A description of 

these samples is shown in Table 2.1 

Table 2.1.  Sample Description 

Sample Length Width Periodicity

(mm) (mm) (mm) (μm)

1 5.72 3.89 1.05 62 20 May 04 Stanford
2 7.74 5.42 0.75 49 20 May 04 Stanford
3 13.69 3.84 1.14 49 27 May 04 Stanford
4 10.29 6.07 1.15 62 27 May 04 Stanford
5 16.00 12.40 1.71 62/63/63.8 08 Apr 04 BAE
6 16.00 12.40 1.23 62/63/63.8 18 May 04 BAE
7 17.00 15.00 1.05 61/63 26 May 04 BAE

Thickness 
(including 
substrate)

Source of 
Template

Growth 
Date

 
 

Meyer did a variety of experiments with the Tm,Ho:YLF laser used in the current 

research effort and an integrating sphere to characterize the samples in possession but did 

not go on to demonstrate frequency conversion in any of them (Meyer, 2006).  Meyer did 

excellent characterization of the seven samples which resulted in good scattering, 

absorption, and loss characteristics for these samples. This data served to determine 

which samples were the best candidates to use as optical parametric oscillators.  The 

scattering, absorption and loss characteristics are summarized in Table 2.2.  For more 

detailed information about these the losses the reader is directed to Meyer’s thesis. 

(Meyer, 2006)  Some of the samples with the lowest overall average losses did have 
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locations of very high losses.  Ultimately there has been a great deal of prior research that 

has led to the success of this current effort. 

Table 2.2.  Scattering, Absorption and Losses 

Sample

1 1.50 1.00 0.50 0.36 1.0 1
2 1.80 0.20 0.75 0.5 1.1 0.6
3 0.60 0.20 0.50 0.22 0.20 0.1
4 1.20 1.20 0.62 0.6 0.60 1.4
5 0.03 0.03 0.008 0.006 0.02 0.02
6 0.03 0.02 0.01 0.006 0.02 0.02
7 0.60 0.60 0.18 0.14 0.40 0.4

Average 
Scattering 

Coef (1/cm)

Standard 
Deviation

Average 
Total Loss 

Coef (1/cm)

Standard 
Deviation

Average 
Absorption 
Coef (1/cm)

Standard 
Deviation
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III. Experimental 

 

As discussed, orientation patterned gallium arsenide (OPGaAs) shows promise as a 

means of producing radiation across the mid-IR spectral region and into the far-IR as 

well. The basic scope of this research effort was to demonstrate the capability of either 

optical parametric generation or optical parametric oscillation (OPO) within the Air 

Force Research Laboratory, and to compare the various samples provided to us through 

collaborations with industry.  

 Experiments in this research were set up similarly to previous experiments 

performed in the Air Force Research Laboratory (Harm, 2002 and Meyer, 2006).  The 

complete experimental setup and subsequent results will be discussed in the following 

sections. 

3.1 Pump Laser, 2.052 μm   

For this experiment the pump wavelength was 2.052 μm and was generated by a 

laser-diode-pumped, thulium-holmium-doped yttrium lithium fluoride (Tm,Ho:YLF) 

laser.  The laser diode pump was a water-cooled 15 W array of continuous wave 

aluminum gallium arsenide (AlGaAs) emitters producing a coherent source at 793 nm 

through a 1 meter length optical fiber shown in figure 3.1.  The output was then coupled 

through a pair of antireflective coated 6 cm focal length lenses into a liquid nitrogen 

cooled 5x5x5 mm3 Tm,Ho:YLF  crystal with concentrations of Tm and Ho of 6% and 

1%, respectively.  The side facing the diode laser was AR-coated for 793 nm to transmit 
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the diode and highly reflectively (HR) coated for 2.052 μm thus acting as the input 

(planar) side for a plano-convex laser cavity 22.4 cm in length.  The outcoupler mirror 

has a radius of curvature of 1 m with a 70% reflectivity at 2-μm.  The laser was pulsed 

with a water cooled acousto-optic Q-switch capable of repetition rates from 100 Hz to 10 

kHz, and was operated at 500 Hz for these experiments, producing a pulse width of 

approximately 40 ns with an input current to the pump diode array of 17 Amps.  

At this pump power level, the Tm,Ho:YLF laser produced about 1.5 W of average 

power, far in excess of the damage threshold of the OPGaAs samples, In order to 

attenuate the power incident upon the sample, a half-wave plate was placed before the 

polarizing component of a faraday isolator which allowed for precise control of the laser 

power.  Following the isolator the laser was turned using a silver mirror then passed 

through a 10-cm focal length lens to focus the beam onto the OPGaAs sample.   

 

Figure 3.1.  Pump laser Schematic (Meyer, 2006) 
 

 Before attempting to pump samples, the beam profile after the 10 cm lens was 

measured with a Nanoscan beam profiling system to confirm that the beam was similar to 

the previous experiments:  small enough to pass cleanly through the aperture of the 

patterned area, and to ensure sufficient intensity for efficient nonlinear conversion.  The 
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beam profile was not measured exhaustively but was quickly examined, without a sample 

in place, and was found to have a focal point at 13.6 cm from the 10 cm lens without the 

sample present and a radius of about 80 μm which was consistent with previous 

experiments.  In addition to using the Nanoscan the laser was directed into an IR camera 

to get an idea of what the pump beam quality was visually (Figure 3.2).   

 

Figure 3.2.  Beam profile taken with an infrared camera. 

Finally, since the OPG/OPO output efficiency can be increased by narrowing the 

linewidth a “legacy” etalon was installed in the laser cavity and a Spex 220M 

monochromator was used to determine if narrowing was evident.  Unfortunately the 

etalon did not appear to have substantial effect on the pump laser linewidth and the 
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linewidth was measured to have a full width half max of 4 nm.  This was expected to be 

sufficiently narrow given that the calculated phase matching bandwidth for this 

interaction is approximately 4 nm.  The output threshold and intensity could be improved 

by narrowing the frequency of the beam, but it is possible to phase-match using the laser 

as it is set up. 

3.2 OPG Experiment 

 Before installing resonator mirrors it was thought that an attempt should be made 

to do Optical Parametric Generation (OPG).  This is essentially modeled as a single pass 

optical parametric process and the setup effectively involves passing the laser through the 

sample and measuring output.  The center grating of sample 5 was chosen for this portion 

of the experiment as it appeared to have the lowest losses (Table 2.2).  Sample 5 is also 

one of the longer samples and was about 16 cm in length. 

In order to ensure that the beam was passing straight through the sample without 

clipping or total internal reflection, an Electrophysics IR camera was used to view the 

beam transmitted by the sample.  Then to determine if measurable OPG was present a 

room temperature HgCdTe detector was placed in the beam path on the other side of a 

longpass filter designed to block the 2.052 μm pump but transmit any signal and idler 

output.  After the unsuccessful attempt to see the output with the room temperature 

HgCdTe detector a cooled HgCdTe detector was used.  This detector was supposed to 

have a higher sensitivity but unfortunately the electrical noise introduced by the available 

amplifier was too large to get usable measurements.   Finally a high sensitivity Laser 
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Probe power meter was placed beyond the filter with the intention of measuring signal 

and idler output.  Figure 3.3 shows a schematic of the OPG experiment. 

Tm,Ho:YLF
HR on rear face

Outcoupler
1m ROC
~70%R λ/2 plate

Isolator
Mirror

Lens, f=10 cm

OPGaAs Sample

Laser Probe
Power Meter

Lens
f=20 cm

2 μm Filter
Optical Parametric 

Generation Schematic

 
Figure 3.3.  Schematic of the OPG Experiment Setup. 

 

 OPG is a spontaneous process such that when a 2.052 μm wavelength beam is 

passed through an OPGaAs sample a signal and idler will be generated.  Unfortunately in 

order to generate enough photons for measurable output it is likely necessary to apply 

more pump power then is possible without causing damage to the AR coatings on the 

sample.  Thus optical parametric generation was not successful for the OPGaAs samples 

available in this experiment.    
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3.3 OPO Experiment 

 After translating sample 5 looking for OPG proved unsuccessful, the decision was 

made to set up an OPO resonator in the hopes that the resulting feedback would be 

sufficient to get over threshold and see measurable signal and idler.  To simplify the 

alignment process, a pair of apertures and a power meter was used to ensure the laser was 

parallel to the surface of the optical bench.  Then the beam path was reverse illuminated 

with a green alignment laser such that the OPO optics and sample could be aligned 

visually by means of the back reflections.  The green alignment laser in conjunction with 

a power meter proved very effective in aligning the samples for OPO.   

The beam profile in the OPO cavity was modeled using Paraxia software in order 

to predict what mirror radius of curvature would result in a resonant mode most closely 

overlapping with the pump beam.  In addition, in order to more closely resemble previous 

experiments by Schunemann et al the distance between the mirrors was set as short as 

practical,  18 mm for sample 5, sample 6, and sample 7 and 14 mm for sample 1 and 

sample 4.  Additionally these cavity lengths were chosen to increase the number of passes 

per pulse which also should decrease the threshold.  Doubly resonant oscillator (DRO) 

mirrors were used in the experiment.  The reason these mirrors were chosen is two fold.  

First, there was a greater variety of meniscus DRO mirrors available for the wavelengths 

needed.  Second, OPO should have a lower threshold with DRO mirrors then with SRO 

mirrors.  The input mirror was AR coated for 2.06 μm and HR coated for 3.5 – 4.5 μm.  

The output mirror was HR coated for 2.06 μm and had an 80% Reflectivity at 3.5 – 4.5 

μm.  This was a smaller wavelength region from the DRO experiments performed by 

BAE Systems but seemed to prove effective in producing signal and idler outputs. 
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Meniscus mirrors were chosen to avoid defocusing the carefully characterized pump 

beam.  

The samples were set on a bracket attached to an x-y-z stage but nothing was 

done to cool the samples while the laser was applied. (Figure 3.4)  After visual alignment 

of the sample and OPO mirrors with the green laser, the waveplate in the pump train was 

adjusted to provide approximately 100 mW average power incident on the OPGaAs 

sample.  This average power was chosen because previous experiments by Schunemann 

et al had found the damage thresholds for these samples to be 1.36 J/cm2 which 

corresponded to 170 mW average power in our laser.  This is well over the anticipated 

threshold to get OPO output of 20-50 mW. 

 

Figure 3.4.  OPO cavity showing how sample is mounted. The input mirror is on the 
right and the output mirror is on the left. 
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To further align the beam through the grating the sample was raised until the 

sample bracket blocked the input beam.  Then the sample was lowered until the power 

fluctuated at the upper surface, then each of these positions were noted on the z-axis 

translation stage.  The sample was then lowered until the beam diameter was completely 

within the sample grating.  Following this step the sample was translated in order to 

maximize the power output. 

A room temperature HgCdTe IR detector was set up after the 2 μm filter, and the 

output mirror was adjusted systematically until output was detected.  Once a signal and 

idler were obtained, the detector was removed and replaced with a Laser Probe RM 6600 

Universal Radiometer with an RKP-575 sensor head and the input and output OPO 

mirrors were adjusted to maximize output power.  This was done because the HgCdTe IR 

detector was much more sensitive to the small fluctuations that occur when initially 

adjusting the mirrors but the threshold of the sensor was far exceeded once OPO was 

activated.  The Newport power meter and Laser Probe power meter were calibrated by 

measuring power at the same location and produced similar power measurements.  

During the experiment the incident power was measured with the Newport meter and the 

output power was measured with the Laser Probe power meter.  

Upon getting consistent output with each sample the pump, signal, and idler were 

directed using mirrors into a monochromator in order to measure the spectral properties 

of the signal and idler beams (Figure 3.5).  The monochromator was a Spex 220M with a 

300 and 150 micron grating.  The detector was a liquid N2 cooled InSb amplified 

detector.  The amplified output of the detector was directed through a Model SR850 DSP 

lockin amplifier tied to the reference output of the acoustic Q-switch signal generator of 
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the pump laser.  Before directing the laser into the monochromator the beam was passed 

through optics in order to maximize the coverage on the spectrometer grating, which was 

a constant struggle throughout the experiment.  Calibration of the monochromator was 

done by measuring the wavelength of the pump beam and making an adjustment within 

the monochromator software.  Although in the interest of completeness of research the 

pump and signal were measured with the 300 micron grating; all of the results reported in 

this thesis are from the 150 micron grating since it was capable of measuring the pump, 

signal, and idler.  The resolution of this grating was determined by reflecting the pump 

laser off of a piece of ground glass into the monochromator then the slit width was 

decrease until the width of the pump peak didn’t change.   

Tm,Ho:YLF
HR on rear face

Outcoupler
1m ROC
~70%R

λ/2 plate Isolator Mirror

Lens, f=10 cmLens
f=20 cm

MirrorMirror

Entrance
Slit

SPEX 220M
Monochromator In-Sb detector 18/11 mm

DRO OPO mirror
Rmax @ 3.5-4.5 μm
Tmax @ 2.06 μm
ROC = 25 mm

DRO OPO mirror
R = %80 @ 3.5-4.5 μm
Rmax @ 2.06 μm
ROC = 25 mm

Orientation 
Patterned 

GaAs

  
Figure 3.5.  Schematic of table setup showing OPGaAs OPO setup. 
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The width of the peak was measured and this value represents the resolution of 

the laser at a particular slit width.  At the slit widths used in the experiment the resolution 

varied from 10 nm – 20 nm wavelength using slit widths from 0.050 mm – 0.100 mm. 
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IV. Results and Discussion 

 

 With the 2.052 μm laser, OPO should be possible on samples 1, 4, 5, 6 and 7 

based upon phasematching consideration.  So far stable OPO has been successfully 

demonstrated with sample 4, the 62 μm and 63.8 μm gratings of sample 5, the 62 μm 

grating of sample 6, and both the 61 μm and 63 μm grating of sample 7.  Once stable 

output was obtained with each grating, slope efficiency was measured.  Then the pump, 

signal, and idler were directed into a monochromator and spectral measurements were 

taken. 

4.1 Threshold and Slope Efficiency 

 The slope efficiency for each sample, and for each grating in the case of the multi-

grating samples, was determined by measuring the incident power with a Newport 

Multifunction optical meter and then measuring the output of the combined signal and 

idler using a Laser Probe Universal Radiometer.   

The input power measurements were all taken immediately following the isolator.  

Then to calculate the incident power, which is the average power incident on the surface 

of the sample, the power was measured after the isolator and after the input mirror during 

the swapping of one of the samples.  The average power after the input mirror, of 90 ± 

1.5 mW, was then divided by the average power after the isolator, of 97 ± 1.5 mW.  Then 

to convert the input power measurements to incident power the value calculated above 

was multiplied by the measured input power.  The output power was measured after a 
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filter designed to block the pump but allow the signal and idler to pass freely.  This filter 

was examined in an FTIR and blocked 98% of the pump but allowed all but about 3 – 4% 

of the signal and idler.  This was not accounted for in the calculations.    

It appears as though the threshold is generally increasing as the period gets longer, 

this trend is not entirely consistent as the threshold for the 63 μm period is slightly larger 

then the 63.8 μm period (Table 4.1).  Also, the differences in sample length are expected 

to have a more significant effect on threshold than the grating period through its influence 

on signal and idler wavelengths. 

Table 4.1.  Slope efficiency data for each of the samples and periods 

Sample # Period (mm) % Efficency Threshold (mW) 
7 61 4.48 33.63 ± 0.8 
5 62 11.08 46.42 ± 0.8 
6 62 6.36 47.97 ± 0.8 
4 62 4.18 47.53 ± 0.8 
7 63 5.75 64.10 ± 0.8 
5 63.8 10.27 60.78 ± 0.8 

 

The percent slope efficiency tended to be consistent in each sample.  Sample 5 

had the best slope efficiency of the three samples examined whereas Sample 4 had the 

worst.  This trend appears to be consistent with the loss data found in Table 2.2 collected 

by Meyer (Meyer, 2006).  Sample 5 showed the best transmission and had the highest 

slope efficiency.  Sample 7 did not have quite as good a slope efficiency and the 

transmission coefficient was lower then sample 5.  Sample 4 is the shortest sample and 

had the lowest slope efficiency.  Damage occurred to Sample 1, at a relatively low power 

of 90-100 mW, before OPO was successfully demonstrated.   There did not appear to be a 
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correlation between the grating periods in each sample and the percent slope efficiency.  

The slope efficiency merely differed from sample to sample (Figure 4.1).   

All of our efficiency values were substantially less then the results from 

Schunemann et al.  Sample 5 which is a sister sample to the one in the BAE experiment 

doesn’t have nearly as high an efficiency as was measured by Schunemann et al.  In their 

experiment they measured a slope efficiency of 20% which is twice what the highest 

slope reported here is and the remaining samples are much lower.  Several factors may 

have played a part in this.  It’s possible that our samples had areas with unpatterned gaps 

causing a reduction in the output efficiency.  In addition our laser spot size, pulse width, 

bandwidth and divergence differed from the BAE setup.  
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Figure 4.1.  Slope efficiency curves for samples 4, 5, 6, and 7. 
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Finally, the BAE DRO output mirror differed substantially from ours in that it 

reflected 90% of the signal and idler from 3 – 5 μm whereas our DRO output mirror 

reflected 80% of the signal and idler from 3.5 – 4.5 μm.  These effects may have 

combined to decrease our efficiency.  The error for the values of the input and output 

power was determined through observing the variations in the power as measurements 

were being taken.  Thus these values may include actual deviations in the output in 

addition to variations in the measuring devices.  

4.2 Spectral Data 

 The most interesting aspect of this experiment was the opportunity to examine the 

spectral makeup of the signal and idler for each of the samples.  For each sample the 

OPO output was directed into the monochromator and the signal, idler and pump were 

measured.  The pump wavelength was measured primarily in order to calibrate the other 

results, since the wavelength of the pump laser had been previously established to be 

2.052 μm (Figure 4.2).  The signal and idler spectra for the various gratings are shown in 

Figure 4.3 and Figure 4.4.  Finally the measured signal and idler were compared to the 

“calculated” OPO tuning curve for 2.052 μm wavelength. (Figure 4.5) 

As is evident from Figure 4.5 the measured peak positions from the signal and 

idlers for each of the samples are in close agreement to the calculated quasi-phase 

matched tuning curve.  This serves to confirm that the periods of the samples are as they 

were designed.  In addition, the measured signal and idler peak positions as well as 

calculated values for each sample and grating are shown in Table 4.2.     



 

 28

0

0.2

0.4

0.6

0.8

1

2040 2045 2050 2055 2060 2065
Wavelength (nm)

In
te

ns
ity

 (a
rb

/n
or

m
)

 
Figure 4.2.  Pump spectrum was used to calibrate the monochromator and is 

identical for each of the samples. 
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Figure 4.3.  Signal spectra for each of the samples and gratings. 



 

 29

0

0.2

0.4

0.6

0.8

1

4600 4800 5000 5200 5400 5600
Wavelength (nm)

In
te

ns
ity

 (a
rb

/n
or

m
)

Sample 4 - 62 Sample 5 - 62 Sample 5 - 63.8

Sample 7 - 61 Sample 7 - 63

 
Figure 4.4.  Idler spectra each of the samples and gratings. 
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Figure 4.5.  Calculated 2.052 micron quasi-phase matching curves and peak 

positions for each of the samples and gratings. (Smith, 2006) 
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The full width half max of the signal and idler peaks were on the order of 50-100 

nm which might account for some of the differences between measured and calculated 

values, although the actual experimental error is much smaller.  Other things that could 

be causing the variation include thermal effects or slight variations in the period of the 

samples.  Additionally these variations might be due to differences in the values of the 

index of refraction due to the manufacturing process versus the index of refraction used 

to calculate signal and idler from the pump.  Finally since the sample was not cooled by 

any means the slight displacement of the measured signal and idler positions might be 

due to the laser heating up the sample thus causing temperature tuning.  In this 

experiment, a calculated tuning curve based upon a sample temperature of 305 K rather 

than 300K appears to be slightly closer to the actual measured peak positions. 

In this experiment the “calculated” QPM tuning curves were generated using the 

SNLO program created by Arlee Smith at Sandia National Labratories. 

Table 4.2.  Comparison between calculated signal/idler and measured signal/idler 

  Signal Wavelength (nm) Idler Wavelength (nm) 

Sample  Period 
Calc 
(RT) 

Calc 
(305K) Measured 

Calc 
(RT) 

Calc 
(305K) Measured 

4 62 3449 3431 3424.5 ± 10 5065 5104 5120 ± 15 
5 62 3449 3431 3426.5 ± 10 5065 5104 5121 ± 15 
5 63.8 3239 3227 3227.5 ± 10 5610 5634 5627.2 ± 10 
7 61 3651 3617 3631 ± 15 4686 4742 4726 ± 20 
7 63 3333 3305 3300 ± 10 5372 5411 5388 ± 20 

 
 The error though not substantial was calculated by determining the resolution of 

the instrument.  This was done by reducing the slit diameter while measuring the pump in 

CW reflected off of a ground glass plate.  As the slit is decreased the width of the peak 

also decreases until the resolution of the grating is reached.  When measuring the pump 
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the maximum resolution was reached when the slits were set at 0.050 mm which resulted 

in a peak width of about ±8 nanometers.  The signal and idler error were then adjusted 

based on how much large the slit needed to be to get measurable output.  In this 

experiment the largest slit used to measure the output signal and idler was 0.100 mm 

effectively doubling the error in those samples.
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V. Conclusions and Recommendations 

The basic objective of this research thesis was to successfully demonstrate optical 

parametric generation or optical parametric oscillation in samples that were examined in 

previous experiments, and to provide further comparisons among the various samples.  

An additional goal was to get spectral data for comparison to calculated quasi-phase 

matched OPO tuning curves which was very successful.   

However there are several things that still can and should be done with respect to this 

research effort.  Generating output using a 1.9 μm Ho:YLF pump laser would be very 

useful in order to examine samples 2 and 3 with gratings of 49 μm which are incapable of 

generating output with a 2.052 μm laser, and for gathering additional data on the other 

samples (See figure 1.1).  Use of a Cr:ZnSe pump laser, tunable in the 2.3-2.6 μm range, 

would make it straightforward to spectrally tune the OPGaAs OPO output by tuning the 

pump laser wavelength.  Additionally there is an interest in determining if incorporating 

an etalon can improve output slope efficiency using the current laser setup.  Suffice to say 

there are a number of very useful directions that this research effort can go. 
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